A Distributed Algorithm for Nonconvex Quadratically Constrained Programs
نویسندگان
چکیده
منابع مشابه
Convex quadratic relaxations of nonconvex quadratically constrained quadratic programs
Nonconvex quadratic constraints can be linearized to obtain relaxations in a wellunderstood manner. We propose to tighten the relaxation by using second order cone constraints, resulting in a convex quadratic relaxation. Our quadratic approximation to the bilinear term is compared to the linear McCormick bounds. The second order cone constraints are based on linear combinations of pairs of vari...
متن کاملA semidefinite relaxation scheme for quadratically constrained
Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...
متن کاملRobust convex quadratically constrained programs
In this paper we study robust convex quadratically constrained programs, a subset of the class of robust convex programs introduced by Ben-Tal and Nemirovski [4]. Unlike [4], our focus in this paper is to identify uncertainty structures that allow the corresponding robust quadratically constrained programs to be reformulated as second-order cone programs. We propose three classes of uncertainty...
متن کاملHidden convexity in some nonconvex quadratically constrained quadratic programming
We consider the problem of minimizing an indefinite quadratic objective function subject to twosided indelinite quadratic constraints. Under a suitable simultaneous diagonalization assumption {which trivially holds for trust region type problems), we prove that the original problem is equivalent to a convex minimization problem with simple linear constraints. We then consider a special problem ...
متن کاملReformulating Mixed-Integer Quadratically Constrained Quadratic Programs
It is well known that semidefinite programming (SDP) can be used to derive useful relaxations for a variety of optimisation problems. Moreover, in the particular case of mixed-integer quadratic programs, SDP has been used to reformulate problems, rather than merely relax them. The purpose of reformulation is to strengthen the continuous relaxation of the problem, while leaving the optimal solut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2020
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2020.12.2474